Lesson 18. Stochastic Dynamic Programming, cont.

1 The problem

Suppose you have $\$ 5,000$ to invest. Over the next 3 years, you want to double your money. At the beginning of each of the next 3 years, you have an opportunity to invest in one of two investments: A or B. Both investments have uncertain profits. For an investment of $\$ 5,000$, the profits are as follows:

Investment	Profit (\$)	Probability
A	$-5,000$	0.3
	5,000	0.7
B	0	0.9
	5,000	0.1

You are allowed to make at most one investment each year, and can invest only $\$ 5,000$ each time. Any additional money accumulated is left idle. Once you've accumulated $\$ 10,000$, you stop investing.
Formulate a stochastic dynamic program to find an investment policy that maximizes the probability you will have $\$ 10,000$ after 3 years.

2 Warm up

Consider the following investment policy. What is the probability of having at least $\$ 10,000$?

3 Formulating the stochastic dynamic program

- Stages:
- States:
- Allowable decisions x_{t} at stage t and state n :
\square
- Sketch of basic structure - transition probabilities and contributions:
- In words, the value-to-go $f_{t}(n)$ at stage t and state n is:
- Value-to-go recursion

$$
f_{t}(n)=\min _{x_{t} \text { allowable }} / \max \left\{\sum_{m \text { state }} p\left(m \mid n, t, x_{t}\right)\left[c\left(m \mid n, t, x_{t}\right)+f_{t+1}(m)\right]\right\} \quad \text { for stages } t \text { and states } n
$$

\square

- Boundary conditions:
- Desired value-to-go function value:

4 Interpreting the value-to-go function

- Solving the recursion on $f_{t}(n)$, we obtain:

t	n	$f_{t}(n)$	x_{t}^{*}
1	0	0	no investment
1	5000	0.757	B
1	10000	1	no investment
2	0	0	no investment
2	5000	0.73	B
2	10000	1	no investment
3	0	0	no investment
3	5000	0.7	A
3	10000	1	no investment

- Based on this, what should your investment policy be?

- What is your probability of having $\$ 10,000$?

