Lesson 18. Stochastic Dynamic Programming, cont.

1 The problem

Suppose you have \$5,000 to invest. Over the next 3 years, you want to double your money. At the beginning of each of the next 3 years, you have an opportunity to invest in one of two investments: A or B. Both investments have uncertain profits. For an investment of \$5,000, the profits are as follows:

Investment	Profit (\$)	Probability
А	-5,000 5,000	0.3 0.7
В	0 5,000	0.9 0.1

You are allowed to make at most one investment each year, and can invest only \$5,000 each time. Any additional money accumulated is left idle. Once you've accumulated \$10,000, you stop investing.

Formulate a stochastic dynamic program to find an investment policy that maximizes the probability you will have \$10,000 after 3 years.

2 Warm up

Consider the following investment policy. What is the probability of having at least \$10,000?

- 3 Formulating the stochastic dynamic program
 - Stages:
 - States:
 - Allowable decisions *x*_t at stage *t* and state *n*:

• Sketch of basic structure – transition probabilities and contributions:

- In words, the value-to-go $f_t(n)$ at stage *t* and state *n* is:
- Value-to-go recursion

$$f_t(n) = \min_{x_t \text{ allowable}} \left\{ \sum_{m \text{ state}} p(m \mid n, t, x_t) \left[c(m \mid n, t, x_t) + f_{t+1}(m) \right] \right\} \text{ for stages } t \text{ and states } n$$

• Boundary conditions:

• Desired value-to-go function value:

4 Interpreting the value-to-go function

• Solving the recursion on $f_t(n)$, we obtain:

t	п	$f_t(n)$	x_t^{\star}
1	0	0	no investment
1	5000	0.757	В
1	10000	1	no investment
2	0	0	no investment
2	5000	0.73	В
2	10000	1	no investment
3	0	0	no investment
3	5000	0.7	А
3	10000	1	no investment

• Based on this, what should your investment policy be?

• What is your probability of having \$10,000?